Abstract

The spin-dependent propagation of electrons in helical nanowires is investigated. We show that the interplay of spin angular momentum and nanowire chirality, under spin-orbit interaction, lifts the symmetry between left and right propagating electrons, giving rise to a velocity asymmetry. The study is based on a microscopic tight-binding model that takes into account the spin-orbit interaction. The continuity equation for the spin-dependent probability density is derived, including the spin nonconserving terms, and quantum dynamics calculations are performed to obtain the electron propagation dynamics. The calculations are applied to the inorganic double-helix SnIP, a quasi-1D material that constitutes a semiconductor with a band gap of ∼1.9 eV. The results, nevertheless, have general validity due to symmetry considerations. The relation of the propagation velocity asymmetry with the phenomena ascribed to the chiral-induced spin selectivity effect is examined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.