Abstract

Chirality at surfaces has become a strong focus within the surface science community. A particular motivation is the prospect of using heterogeneous catalysis over chiral solid surfaces for asymmetric synthesis, a prospect which has clear relevance to the pharmaceutical industry. Small amino acids adsorbed on Cu surfaces have emerged as important model systems for studying the interaction of chiral molecules with metal surfaces. In this article, we review the current state of knowledge of these systems, and present the results of new experimental studies of alanine overlayers on Cu{311} and {531} surfaces. Our work on Cu{311} helps us to understand the interplay between different manifestations of chirality, especially “footprint chirality”, in the overlayers. Cu{531} is an intrinsically chiral surface orientation; our data reveal strongly enantiospecific alanine-induced restructuring of this surface. This points the way towards a promising route for obtaining strongly enantiospecific interactions with chiral adsorbates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.