Abstract

Although the phenomenon of chirality appears in many investigations of maps and hypermaps, no detailed study of chirality seems to have been carried out. Chirality of maps and hypermaps is not merely a binary invariant but can be quantified by two new invariants—the chirality group and the chirality index, the latter being the size of the chirality group. A detailed investigation of the chirality groups of orientably regular maps and hypermaps will be the main objective of this paper. The most extreme type of chirality arises when the chirality group coincides with the monodromy group. Such hypermaps are called totally chiral. Examples of these are constructed by considering appropriate “asymmetric” pairs of generators of certain non-abelian simple groups. We also show that every finite abelian group is the chirality group of some hypermap, whereas many non-abelian groups, including symmetric and dihedral groups, cannot arise as chirality groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.