Abstract

Single-walled carbon nanotubes (SWCNTs) are seamless cylindrical tubes consisting of carbon atoms with diameters ranging from less than one nanometer to a few nanometers. The arrangement of carbon atoms in a SWCNT is uniquely specified by using a pair of integers (n,m) referred to as the chiral indices. While the detailed structures, such as a carbon–carbon bond length, should be important, they have not been fully clarified yet. In this work, we examine the possibility of powder X-ray diffraction (XRD) method to characterize structures of SWCNTs. It is found that the XRD is a useful tool to “fingerprint” the chiral indices of bulk SWCNT samples. Besides, we find that information on the detailed structure within a SWCNT can be obtained from the XRD pattern. The application to a highly concentrated SWCNTs clarifies that the (6,5) SWCNT is expanded along the radial direction compared to that of ideal rolling up structure of graphene, with a negligible change along the tube axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call