Abstract

In this paper, we show the possibility of spatially separating two opposite enantiomers of chiral molecules, using an optical dipole potential. Because of the broken mirror symmetry of effective potential, chiral molecules have a cyclic three-level Δ-configuration structure. Irradiation of these molecules with three femtosecond laser pulses gives rise to an enantiomer-dependent optical force. Interestingly, considerable differences in the direction of the force felt by the enantiomers have been shown to cause the chirality-dependent optical dipole potential which stably captures only one enantiomeric form. Moreover, the proposed scheme provides a complete control over what kind of molecules, the left- or right-handed ones, can be selectively trapped. Note that we have analyzed the optical force, and specifically the trapping effect, by considering the full interaction Hamiltonian, including both rotating and counter-rotating terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.