Abstract

We formulate the chiral vortical effect (CVE) and its generalization called generalized vortical effect using the semiclassical theory of wave packet dynamics. We take the spin-vorticity coupling into account and calculate the transport charge current by subtracting the magnetization one from the Noether local one. We find that the transport charge current in the CVE always vanishes in relativistic chiral fermions. This result implies that it cannot be observed in transport experiments in condensed matter systems such as Dirac/Weyl semimetals with the pseudo-Lorentz symmetry. We also demonstrate that the anisotropic CVE can be observed in nonrelativistic systems that belong to the point groups $D_n, C_n (n = 2, 3, 4, 6)$, and $C_1$, such as $n$-type tellurium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.