Abstract
Three-nucleon forces (3NFs), and in particular terms of the Fujita-Miyazawa type, strongly influence the structure of neutron-rich exotic isotopes. Ab-initio calculations have shown that chiral two- and three-nucleon interactions correctly reproduce binding energy systematics and neutron driplines of oxygen and nearby isotopes. Exploiting the novel self-consistent Gorkov-Green's function approach, we present the first investigation of Ar, K, Ca, Sc and Ti isotopic chains. Leading chiral 3N interactions are mandatory to reproduce the trend of binding energies throughout these chains and to obtain a good description of two-neutron separation energies. At the same time, nuclei in this mass region are systematically overbound by about 40 MeV and the $N=20$ magic gap is significantly overestimated. We conclude that ab-initio many-body calculations of mid-mass isotopic chains challenge modern theories of elementary nuclear interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.