Abstract
We analyze the "higher rank" gauge theories that capture some of the phenomenology of the fracton order. It is shown that these theories lose gauge invariance when an arbitrarily weak and smooth curvature is introduced. We propose a resolution to this problem by introducing a theory invariant under area-preserving diffeomorphisms, which reduce to the higher rank gauge transformations upon linearization around a flat background. The proposed theory is geometric in nature and is interpreted as a theory of chiral topological elasticity. This theory exhibits some of the fracton phenomenology. We explore the conservation laws, topological excitations, linear response, various kinematical constraints, and canonical structure of the theory. Finally, we emphasize that the very structure of Riemann-Cartan geometry, which we use to formulate the theory, encodes some of the fracton phenomenology, suggesting that the fracton order itself is geometric in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.