Abstract

Many achiral polymers crystallize into spherulites with gigantic chirality, as is evident from spectacular images of periodic banding observed in a polarized optical microscope, arising from the twisting of the lamellae making up the spherulites. We present a new mechanism of the spontaneous chiral symmetry breaking, by accounting for topological defects in finite crystalline ribbons made of achiral molecules in equilibrium. We show that disclinations stabilize a twisted helicoidal ribbon, with spontaneous selection of its width and chiral period, which are proportional to each other, as a universal law.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.