Abstract

The emergence of order in far-from-equilibrium systems is often accompanied by the formation of spatially asymmetric patterns. About 30 years ago, a general mechanism to select a chiral solution by coupling a reaction-diffusion system to an external chiral electric field was proposed by Nicolis and Prigogine [Proc. Natl. Acad. Sci. USA 78, 659 (1981)]. However, no experimental or even numerical evidence in reaction-diffusion systems has been reported yet. Here we report a chiral symmetry-breaking phenomenon in a reaction-diffusion system coupled to a circularly polarized electric field (CPEF). Specifically, we show that the CPEF breaks the zero-rotation chiral symmetry between clockwise and counterclockwise spiral defects and that ordered spiral waves with preferred chirality arise from defect-mediated turbulence. The occurrence of such chiral symmetry breaking can be understood by the competition between spiral defects with opposite chirality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.