Abstract

AbstractThe autoxidation of tetralin is treated as a model reaction system to define the applicability of stereospecific autocatalysis. This concept, predicting a spontaneous amplification of enantiomeric excess generated by an autocatalytic chemical reaction, is used in several theoretical models as an explanation for the origin of natural optical activity. The reaction system investigated obeys the basic criteria of these models: a chiral intermediate (tetralin hydroperoxide) is produced from an achiral substrate (tetralin) via an autocatalytic pathway where the feedback mechanism is expected to generate a state of broken chiral symmetry. In order to test the amplification capacity of this reaction a computer analysis of the kinetic scheme is performed. This simulation is derived from the known kinetic scheme of autoxidation and is validated by fitting the experimentally observed data of hydroperoxide evolution. Calculations show that this model allows powerful amplification of enantiomeric excess and a transient amplification of the optical rotation. It is also demonstrated that the model system exhibits pronounced sensitivity toward any loss of absolute configuration of the involved chiral species. Since an amplification effect results exclusively at a high degree of stereoselectivity, it is concluded that stereospecific autocatalysis is possible in systems which show template reactions, crystallization, or colloidal effects. © 1993 Wiley‐Liss, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call