Abstract
A non-perturbative construction of the 3-point fermion-boson vertex which obeys its Ward-Takahashi or Slavnov-Taylor identity, ensures the massless fermion and boson propagators transform according to their local gauge covariance relations, reproduces perturbation theory in the weak coupling regime and provides a gauge independent description for dynamical chiral symmetry breaking (DCSB) and confinement has been a long-standing goal in physically relevant gauge theories such as quantum electrodynamics (QED) and quantum chromodynamics (QCD). In this paper, we demonstrate that the same simple and practical form of the vertex can achieve these objectives not only in 4-dimensional quenched QED (qQED4) but also in its 3-dimensional counterpart (qQED3). Employing this convenient form of the vertex \emph{ansatz} into the Schwinger-Dyson equation (SDE) for the fermion propagator, we observe that it renders the critical coupling in qQED4 markedly gauge independent in contrast with the bare vertex and improves on the well-known Curtis-Pennington construction. Furthermore, our proposal yields gauge independent order parameters for confinement and DCSB in qQED3.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.