Abstract
QCD finite energy sum rules, together with the latest updated ALEPH data on hadronic decays of the tau-lepton are used in order to determine the vacuum condensates of dimension $d=2$ and $d=4$. These data are also used to check the validity of the Weinberg sum rules, and to determine the chiral condensates of dimension $d=6$ and $d=8$, as well as the chiral correlator at zero momentum, proportional to the counter term of the ${\cal{O}}(p^4)$ Lagrangian of chiral perturbation theory, $\bar{L}_{10}$. Suitable (pinched) integration kernels are introduced in the sum rules in order to suppress potential quark-hadron duality violations. We find no compelling indications of duality violations in the kinematic region above $s \simeq 2.2$ GeV$^2$ after using pinched integration kernels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of High Energy Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.