Abstract

The mechanism of multivalent counterion-induced bundle formation by filamentous actin (F-actin) is studied using a coarse-grained model and molecular dynamics simulation. Real diameter size, helically ordered charge distribution and twist rigidity of F-actin are taken into account in our model. The attraction between parallel F-actins induced by multivalent counterions is studied in detail and it is found that the maximum attraction occurs between their closest charged domains. The model F-actins aggregate due to the like-charge attraction and form closely packed bundles. Counterions are mostly distributed in the narrowest gaps between neighboring F-actins inside the bundles and the channels between three adjacent F-actins correspond to low density of the counterions. Density of the counterions varies periodically with a wave length comparable to the separation between consecutive G-actin monomers along the actin polymers. Long-lived defects in the hexagonal order of F-actins in the bundles are observed that their number increases with increasing the bundles size. Combination of electrostatic interactions and twist rigidity has been found not to change the symmetry of F-actin helical conformation from the native 13/6 symmetry. Calculation of zero-temperature energy of hexagonally ordered model F-actins with the charge of the counterions distributed as columns of charge domains representing counterion charge density waves has shown that helical symmetries commensurate with the hexagonal lattice correspond to local minima of the energy of the system. The global minimum of energy corresponds to 24/11 symmetry with the columns of charge domains arranged in the narrowest gaps between the neighboring F-actins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.