Abstract
The influence of intermolecular interactions involving molecular chiral centers on two-dimensional organization in the limit of a weak adsorbate−surface interaction has been studied with low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT). A model system composed of a chiral organic molecule, tartaric acid, and an inert metallic surface, Ag(111), was employed. Dual component films formed from the serial deposition of (S,S)- and (R,R)-tartaric acid enantiomers onto this surface exhibit homochiral domain formation as revealed by molecularly resolved STM images. In contrast, a unique tartaric acid enantiomeric heteropair is experimentally and computationally verified as the basis unit of films formed via the deposition of both enantiomers simultaneously from a racemic (1:1) mixture. The molecular adsorption geometry relative to the Ag(111) lattice in both enantiomerically pure and racemic domains is determined primarily by the interaction of chiral centers between nearest ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.