Abstract
The most typical ingredient of topologically protected quantum states are magnetic fluxes. In a system of spins, complex-valued interaction parameters give rise to a flux, if their phases do not add up to zero along a closed loop. Here we apply periodic driving, a powerful tool for quantum engineering, to a trapped-ion quantum simulator in order to generate such spin-spin interactions. We consider a simple driving scheme, consisting of a repeated series of locally quenched fields, and demonstrate the feasibility of this approach by studying the dynamics of a small system. An emblematic hallmark of the flux, accessible in experiments, is the appearance of chiral spin currents. Strikingly, we find that in parameter regimes where, in the absence of fluxes, phonon excitations dramatically reduce the fidelity of the spin model simulation, the spin dynamics remains widely unaffected by the phonons when fluxes are present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.