Abstract

In this study, manganese-based multiply hierarchical chiral supraparticles (SPs), with an anisotropy factor (g-factor) of 0.102 and circular dichroism (CD) intensity of 260 mdeg at 530nm, are successfully synthesized with polar-solvent-mediated strategies. Notably, the g-factor of the SPs is further enhanced to 0.121 by the addition of an external chiral solvent, generating a chiral biased environment, which increases their CD intensity to 320 mdeg at 500nm. The mechanism underlying the different chirality is proposed to be a difference in the angle of tilt of ±33° between the two enantiomers of the chiral SPs, which involves a difference of ±7° between the orientation of individual nanoplatelets. Chiral solvents induce the angle between adjacent nanoplatelets to get smaller than the original structure that leads to their higher anisotropic value. These findings potentially provide a practical method for the construction of complex chiral superstructures and the regulation of chiroptical activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.