Abstract

Based on first-principles calculations we show that gold atoms can form both freestanding and tip-suspended chiral single-wall nanotubes composed of helical atomic strands. The freestanding, infinite (5,5) tube is found to be energetically the most favorable. While energetically less favorable, the experimentally observed (5,3) tube stretching between two tips corresponds to a local minimum in the string tension. Similarly, the (4,3) tube is predicted as a favorable structure yet to be observed experimentally. Analysis of band structure, charge density, and quantum ballistic conductance suggests that the current on these wires is less chiral than expected, and there is no direct correlation between the numbers of conduction channels and helical strands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call