Abstract

Pyrethroid insecticides are broadly used. They have low toxicity for warm-blooded living creatures, but high toxicity for both insects and fish. Therefore, it is important to reduce the environmental impact of pyrethroids. Pyrethroic acids are chiral compounds. An effective way to decrease pollution is to use enantio-pure insecticide products instead of their racemic mixtures. Enantiomer-pure products require enantiomer selective synthesis and analysis. The chiral selective analysis of pyrethroic acids (an intermediate of pyrethroids) is also important in terms of process control and from the point of view of their degradation metabolism in the environment. This study used various enantiomeric selective chromatographic methods for the separation of different pyrethroic acids, including gas chromatography, supercritical fluid chromatography and capillary electrophoresis. Systematic experiments were conducted to find the optimum conditions for their chiral separation. The employed enantio-selective agents were cyclodextrin derivatives with different ring sizes and substitution patterns. The β-cyclodextrin proved to be excellent for the chiral separation of these acids. The different chiral recognition mechanisms were established using different ring-sized cyclodextrins. The results of these systematic studies demonstrated the correlations of the chiral selectivity features of selectors and the structures of analytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call