Abstract

Chiral short chain aliphatic hydrocarboxylic acids (HCAs) are common compounds being part of different biological processes. In order to control and understand these processes is of pivotal importance to determine the identity of the involved enantiomer or their enantiomeric ratio. In this study the capacity of quinine- and quinidine-derived chiral stationary phases to perform the enantioseparation of eight chiral HCAs (tartaric acid, isocitric acid, malic acid, glyceric acid, 2-hydroxyglutaric acid, 2-hydroxybutyric acid, lactic acid and 3-hydroxybutyric acid) was evaluated. MS-compatible conditions consisting of ACN/MeOH mixtures as eluents with formic acid, acetic acid and/or their ammonium salts as additives, temperatures between 10 and 25°C (except for −20°C for 3-hydroxybutyric acid) and a flow rate of 1.00mL/min yielded full baseline resolution for all studied HCAs. Elution order for the HCA enantiomers was determined revealing different behaviors between the studied compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.