Abstract

Chiral electroseparation is demonstrated, for the first time, by a low molecular weight organogel filled capillary. Five pairs of dansylated amino acids were separated by copper ligand exchange on a trans-(1S,2S)-1,2-bis-(dodecylamido) cyclohexane (1) gel in methanol. Low molecular weight organogels are emerging materials that form stable, fibrillar, thermoreversible and thixotropic gels without covalent bonding of their monomeric building blocks. The dependence of chiral resolution and complex formation stability on the pH*, the ratio between copper and the D-valine selector, as well as other parameters were investigated revealing trends that were unparalleled in previously reports on copper ligand exchange of dansylated amino acids. These observations were explained in view of a simple stacking model of (1) and the difference in axial ligation of the amide carbonyl backbone of the gel to the dansyl D- or L-amino acid:D-valine:copper ternary complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.