Abstract

Plant-based bioactive substances have long been used to treat inflammatory ailments, owing to their low toxicity and cost-effectiveness. To enhance plant treatment by eliminating undesirable isomers, optimizing the chiral separation techniques in pharmaceutical and clinical studies is important. This study reported a simple and effective method for chiral separation of decursinol and its derivatives, which are pyranocoumarin compounds with anti-cancer and anti-inflammatory properties. Baseline separation (Rs >1.5) was achieved using five different polysaccharide-based chiral stationary phases (CSPs) that differed in chiral origin, chiral selector chemistry, and preparation technique. To separate all six enantiomers simultaneously, n-hexane and three alcohol modifiers (ethanol, isopropanol, and n-butanol) were used as mobile phases in the normal-phase mode. The chiral separation ability of each column with various mobile phase compositions was compared and discussed. As a result, amylose-based CSPs with linear alcohol modifiers demonstrated superior resolution. Three cases of elution order reversal caused by modifications of CSPs and alcohol modifiers were observed and thoroughly analyzed. To elucidate the chiral recognition mechanism and enantiomeric elution order (EEO) reversal phenomenon, detailed molecular docking simulations were conducted. The R- and S-enantiomers of decursinol, epoxide, and CGK012 exhibited binding energies of –6.6, –6.3, –6.2, –6.3, –7.3, and –7.5 kcal/mol, respectively. The magnitude of the difference in binding energies was consistent with the elution order and enantioselectivity (α) of the analytes. The molecular simulation results demonstrated that hydrogen bonds, π–π interactions, and hydrophobic interactions have a significant impact on chiral recognition mechanisms. Overall, this study presented a novel and logical approach of optimizing chiral separation techniques in the pharmaceutical and clinical industries. Our findings could be further applied for screening and optimizing enantiomeric separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.