Abstract

The formation of a robust, self-healing hydrogel of a novel pyrene-appended dipeptide, Py-E-A (L-Glutamic acid short as E; L-Alanine short as A) is demonstrated. Detailed studies suggest that nanoscopic fibers with a length of several micrometers have formed by chiral self-organization of Py-E-A gelators. Additionally, live human PBMCs imaging is shown using the Py-E-A fluorophore. Interestingly, electron-rich Py-E-A couples with electron-deficient NDI-β-A (β-Alanine short as β-A) by charge transfer (CT) complexation and forms stable deep violet-colored CT super-hydrogel. X-ray diffraction, DFT, and 2D ROESY NMR studies suggest lamellar packing of both Py-E-A and the alternating CT stack in its hydrogel matrixes. Supramolecular chirality of the Py-E-A donor can be altered by adding an achiral acceptor NDI-β-A. Notably, the fibers of the CT hydrogel are found to be even thinner than the Py-E-A fibers, which, in turn, makes the CT hydrogel more tolerant to the applied strain. Further, the self-healing and injectable properties of the hydrogels are shown. Finally, the magneto-responsive behavior of the Py-E-A and CT hydrogels loaded with spin-canted Cu-ferrite (Cu0.6Zn0.4Fe2O4) nanoparticles (NPs) is demonstrated. The presence of magnetic NPs within the hydrogels has changed the fibrous morphology to rod-like nanoclusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.