Abstract

An armchair graphene nanoribbon switch has been designed based on the principle of the Klein paradox. The resulting switch displays an excellent on-off ratio performance. An anomalous tunneling phenomenon, in which electrons do not pass through the graphene nanoribbon junction even when the conventional resonance condition is satisfied, is observed in our numerical simulations. A selective tunneling rule is proposed to explain this interesting transport behavior based on our analytical results. Based on this selective rule, our switch design can also achieve the confinement of an electron to form a quantum qubit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.