Abstract
Polymer crystallization has long been a fascinating problem and is still attracting many researchers. Most of the previous simulations are concentrated on clarifying the universal aspects of polymer crystallization using model linear polymers such as polyethylene. We are recently focusing on a nearly untouched but very interesting problem of chiral selecting crystallization in helical polymers. We previously proposed a stepwise approach using two kinds of helical polymers, simple "bare" helical polymers made of backbone atoms only such as polyoxymethylene (POM) and "general" helical polymers containing complicated side groups such as isotactic polypropylene. We have already reported on the crystallization in oligomeric POM-like helix but have observed only weak chiral selectivity during crystallization. In the present paper, we investigate the crystallization of sufficiently long POM-like polymer both from the isotropic melt and from the highly stretched melt. We find in both cases that the polymer shows a clear chiral selecting crystallization. Specifically, the observation of a single crystal growing from the isotropic melt is very illuminating. It shows that the crystal thickness and the crystal chirality are closely correlated; thicker crystals show definite chirality while thinner ones are mostly mixtures of the R- and the L-handed stems. The single crystal is found to have a marked lenticular shape, where the thinner growth front, since being made of the mixture, shows no chiral selectivity. The final chiral crystal is found to be completed through helix reversal processes within thicker regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.