Abstract

The application of G-quadruplex stabilizers presents a promising anticancer strategy. However, the molecular crowding conditions within cells diminish the potency of current G-quadruplex stabilizers. Herein, chiral RuII -PtII dinuclear complexes were developed as highly potent G-quadruplex stabilizers even under challenging molecular crowding conditions. The compounds were encapsulated with biotin-functionalized DNA cages to enhance sub-cellular localization and provide cancer selectivity. The nanoparticles were able to efficiently inhibit the endogenous activities of telomerase in cisplatin-resistant cancer cells and cause cell death by apoptosis. The nanomaterials demonstrated high antitumor activity towards cisplatin-resistant tumor cells as well as tumor-bearing mice. To the best of our knowledge, this study presents the first example of a RuII -PtII dinuclear complex as a G-quadruplex stabilizer with an anti-cancer effect towards drug-resistant tumors inside an animal model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call