Abstract

An improved synthesis was developed for CDTP-32476, a potent slow-onset dopamine reuptake blocker that may have utility as a treatment for cocaine abuse. The enantiomers of the compound were separated by fractional crystallization with N-acetylleucine enantiomers. An X-ray crystal structure was obtained of the RR enantiomer paired with N-acetyl-d-leucine. Chiral chromatography showed that the resolved enantiomers were pure with little contamination by the other enantiomer. The enantiomers were tested for their ability to block the reuptake of monoamines at their respective transporters and to stimulate locomotor activity in mice. Both enantiomers potently blocked the reuptake of dopamine and stimulated locomotor activity in mice. The RR enantiomer that corresponds to the active RR enantiomer of methylphenidate was slightly more potent at the dopamine reuptake site. The RR enantiomer also was found to be about twice as selective for the dopamine transporter relative to the norepinephrine transporter, which may have clinical implications. A method for designing slow-onset stimulants is proposed since there is increasing evidence that such activity is an important factor in stimulants that may have limited abuse potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.