Abstract

An asymmetric planar molecule, 4-trans-2-(pyrid-4-yl-vinyl) benzoic acid (PVBA), has been used to establish the organic chiral recognition on fcc(111) metal surfaces. The strong correlation between the orientation and chiral recognition of PVBA on both Ag(111) and Pd(111) guides the choice of a model potential, which determines the relative binding energy of PVBA on fcc(111). An angle-dependent calculation of relative binding energy reproduces the experimental observation of the chiral recognition of PVBA on Ag(111) but not on Pd(111).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.