Abstract

A new adsorbent, poly(amide-imide)/zinc sulfide nanocomposite (PAI/ZnS NC), was fabricated and identified by Fourier-transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission-scanning electron microscopy, and transmission electron microscopy. Then, the obtained NC was applied for the simultaneous removal of auramine O (AO) and rhodamine B (RB) dyes from aqueous solution via the interactions of hydrogen bonding, π– π stacking, and Lewis acid–base interaction. The effects of operational variables including pH, PAI/ZnS NC mass, AO and RB concentration, and sonication time on removal efficiency were examined and optimized values were found to be 8.0, 16 mg, 11 mg L−1, and 6 min, respectively. The adsorption capacities of PAI/ZnS NC for the removal of AO and RB dyes were found to be 70.92 and 91.74 mg g−1, respectively. Ultraviolet–visible spectrophotometer was used to determine the amount of residual dye in solution. Fitting the experimental equilibrium data to isotherm models such as Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich reveals the suitability of the Langmuir model with high correlation coefficients ( R2 = 0.998 for AO and R2 = 0.999 for RB). Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich kinetic models applicability was tested and the pseudo-second-order equation controls the kinetics of the adsorption process. Furthermore, this study establishes that PAI/ZnS NC can be successfully applied as a low-cost adsorbent and conserve its high efficiency after nine cycles for the removal of AO and RB dyes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call