Abstract

AbstractChirality is one of the most mysterious symmetry transformations. Very readily broken in biological systems, it is practically absent in naturally occurring inorganic materials and is very challenging to create artificially. Chiral optical wavefronts are often used for the identification, control, and discrimination of left‐ and right‐handed biological and other molecules. Thus, it is crucially important to create materials capable of chiral interaction with light, which would allow one to assign arbitrary chiral properties to a light field. This study utilizes van der Waals technology to assemble helical homostructures with chiral properties (e.g., circular dichroism). Because of the large range of van der Waals materials available, such helical homostructures can be assigned with very flexible optical properties. The approach is demonstrated by creating helical homostructures based on multilayer (arsenic trisulfide), which offers the most pronounced chiral properties even in thin structures due to its strong biaxial optically anisotropy. The work showcases that the chirality of an electromagnetic system may emerge at an intermediate level between the molecular and the mesoscopic one due to the tailored arrangement of non‐chiral layers of van der Waals crystals and without additional patterning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.