Abstract
A highly enantioselective catalytic protocol for the desymmetrization of a wide variety of 2-substituted and 2,2-disubstituted 1,3-diols is reported. This reaction proceeds through the formation of an "ortho ester" intermediate via oxidation of 1,3-diol benzylidene acetal by dimethyldioxirane (DMDO) and the subsequent proton transfer catalyzed by chiral phosphoric acid (CPA). The mechanism and origins of enantioselectivity of this reaction are identified using DFT calculations. The oxidation by DMDO is rate-determining, and the phosphoric acid significantly accelerates the proton transfer; the attractive interactions between the benzylidene part of the substrate and the 2,4,6-triisopropyl group of CPA are the key to high enantioselectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.