Abstract

Carbonized polymer dots (CPDs) with a circularly polarized fluorescence property have received increasing attention in recent years. However, it is still a great challenge to construct circularly polarized room-temperature phosphorescence (CPRTP) CPDs. Herein, a simple approach to the synthesis of intrinsically CPRTP CPDs for the first time by utilizing sodium alginate and l-/d-arginine as precursors under relatively mild reaction conditions is presented. Notably, the CPDs exhibit both chirality and green RTP in solid states. Furthermore, color-tunable CPRTP is successfully achieved by engineering chiral light-harvesting systems based on circularly polarized phosphorescence resonance energy transfer (C-PRET) where the CPDs with green RTP function as an initiator of chirality and light absorbance, and commercially available fluorescent dyes with different emission colors ranging from yellow to red serve as the terminal acceptors. Through one-step or sequential C-PRET, the light-harvesting systems can simultaneously furnish energy transfer and chirality transmission/amplification. Given the multicolor long afterglow, lifetime-tunable, and CPRTP properties, their potential applications in multiple information encryption are demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call