Abstract

We construct the chiral effective Lagrangian for two lattice theories: one with Wilson fermions and the other with Wilson sea fermions and Ginsparg-Wilson valence fermions. For each of these theories we construct the Symanzik action through order $a^2$. The chiral Lagrangian is then derived, including terms of order $a^2$, which have not been calculated before. We find that there are only few new terms at this order. Corrections to existing coefficients in the continuum chiral Lagrangian are proportional to $a^2$, and appear in the Lagrangian at order $a^2 p^2$ or higher. Similarly, O(4) symmetry breaking terms enter the Symanzik action at order $a^2$, but contribute to the chiral Lagrangian at order $a^2 p^4$ or higher. We calculate the light meson masses in chiral perturbation theory for both lattice theories. At next-to-leading order, we find that there are no order $a^2$ corrections to the valence-valence meson mass in the mixed theory due to the enhanced chiral symmetry of the valence sector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.