Abstract

Pearlescent materials are of technological importance in a diverse array of industries from cosmetics to premium paints; however, chiral pearlescent materials remain unexplored. Here, chiral pearlescent films with on-demand iridescence and metallic appearance are simply organized by leveraging vertical pressure to direct the self-assembly of cellulose nanocrystals. The films are formed with a bilayer planar anchored left-handed chiral nematic architecture, in which the bottom layer is featured with a vertical gradient pitch, and the top layer is featured with a uniform pitch. Simultaneous reflection of the rainbow colors and an on-demand color of left-handed polarized light with angle-dependent wavelength and polarization state accounts for the unique optical phenomenon based on experimental observation and theoretical analysis. Such chiroptical property can be readily tuned with architectural design, enabling reproducible optical appearance with high fidelity. Bringing the pearlescence, iridescence, and specular reflection together endows cellulose nanocrystal films with rich and tunable chiroptical properties that can be used for anti-counterfeiting applications. The current work marks the beginning of chiral pearlescent materials from renewable resources, while the pressure-directed self-assembly provides a step toward scalable production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.