Abstract
The solutions of the Dirac equation are given in terms of bispinors, four-component objects which include both spin and chirality as internal degrees of freedom. For massive particles, the Dirac equation couples components of the bispinor with different chiralities, yielding chiral oscillations. This phenomenon can be particularly relevant for recent proposals aimed at measuring non-relativistic cosmic neutrinos, and can find analogies in Dirac-like systems, such as graphene. In this paper, a concise review of chiral oscillations is presented, including their description with the Dirac's equation dynamics and the underlying group structure. Two paradigmatic cases of chiral oscillations in physical systems are shown: the effects on lepton-antineutrino spin quantum correlations, and neutrino flavor oscillations. Finally, extensions of recent theoretical investigations as well as future research developments are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.