Abstract
Optically active tetrakis(p-alkoxyphenyl)ethylenes were found to function as reversible chiroptical switches upon redox transformations. Successive one-electron oxidations of chirally modified tetraarylethylene to the corresponding radical cation and then to the dication led to dramatic changes in the electronic absorption and circular dichroism (CD) spectra. The neutral species showed no color or CD in the visible region, while the radical ion was blue in color and exhibited a weak Cotton effect, with the dication green and giving an intense Cotton effect and a sign opposite that observed for the radical cation, at a longer wavelength. Molecular orbital calculations and X-ray crystallographic studies clearly indicate that the olefinic C=C bond is significantly twisted in the dication to minimize the electrostatic and steric repulsions. By lowering the temperature of the dication, the twist around the double bond is more firmly fixed in either P or M chirality to give a stronger Cotton effect and a larger anisotropy (g) factor. Since the spectral changes are completely reversible and reproducible for multiple redox cycles, this chiral redox system can be used in novel redox-driven chiroptical applications, such as molecular switches and memory devices, in which the information is written/read chiroptically in the ternary mode, giving zero CD signal in the neutral form, positive CD for the radical cation, and negative CD for the dication at a given wavelength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.