Abstract

Gold(I) catalysis has been recognized as a valuable tool for the unique transformation of multiple carbon-carbon bonds. Enantioselective π-catalysis based on gold(I) complexes is, however, still underdeveloped due to lack of privileged ligands. Herein, we present an accessible method to a new family of stable yet catalytically active chiral NHC-Au(I)-Cl complexes. The key to preserving a simultaneous fine balance between reactivity and stability in this newly developed family appears to be sterically hindered, but conformationally flexible NHC ligands. These could be easily accessed on a multigram scale by merging sterically hindered anilines with commercially available amino alcohols and amines via a four-steps synthetic sequence without the need for chromatographic purification. Further investigations of the catalytic activity of NHC-Au-Cl complexes identified the OH functionality incorporated into the NHC core as crucial for the level of enantioselectivity as well as the TsO- anion responsible for the activation of NHC-Au(I)-Cl. Finally, NMR studies and X-ray investigations revealed for the first time that the widely accepted ion metathesis (NHC-Au-Cl to NHC-Au-OSO2 R) responsible for the activation of NHC-Au-Cl complexes does not take place (or it is very slow) in commonly used MeNO2 in contrast to DCM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call