Abstract

The chiral molecular structures of four different substituted indans, namely, (S)-1-methylindan, (R)-1-methylindan-1-d, (R)-1-aminoindan, and (S)-1-indanol, were investigated using experimental vibrational absorption and vibrational circular dichroism spectra and corresponding spectra predicted using quantum chemical (QC) calculations. All of these molecules possess two ring puckering conformations, with ring puckering leading to the pseudoequatorial substituent being approximately four times more abundant over that leading to the pseudoaxial substituent. The amino group in 1-aminoindan has three conformations arising from the rotation of NH2 group, for each ring puckering conformation, resulting in a total of six conformations. Whereas 1-indanol in the nonhydrogen-bonding solvent CCl4 also has six conformations similar to those of 1-aminoindan, 1-indanol in the hydrogen-bonding solvent DMSO-d6 adopts numerous conformations, of which 30 conformers are considered to have at least ∼1% or more population. In DMSO solution, ring puckering leading to pseudoequatorial substituent accounts for 77% population and 23% for pseudoaxial substituent. The QC spectra predicted for the geometry optimized conformers are found to be in excellent quantitative agreement with corresponding experimental spectra in all of the molecules considered. The procedures suggested in this work are hoped to provide successful pathways for future chiral molecular structural analyses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call