Abstract

Non-Hermitian systems with parity-time (PT) symmetry reveal rich physics beyond the Hermitian regime. As the counterpart of conventional PT symmetry, anti-parity-time (APT) symmetry may lead to new insights and applications. Complementary to PT-symmetric systems, non-reciprocal and chiral mode switching for symmetry-broken modes have been reported in optics with an exceptional point dynamically encircled in the parameter space of an APT-symmetric system. However, it has remained an open question whether and how the APT-symmetry-induced chiral mode transfer could be realized in mechanical systems. This paper investigates the implementation of APT symmetry in a three-element mass–spring system. The dynamic encircling of an APT-symmetric exceptional point has been implemented using dynamic-modulation mechanisms with time-driven stiffness. It is found that the dynamic encircling of an exceptional point in an APT-symmetric system with the starting point near the symmetry-broken phase leads to chiral mode switching. These findings may provide new opportunities for unprecedented wave manipulation in mechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.