Abstract

Chiral metamaterials have attracted strong interest due to their versatile capabilities in spin-dependent light manipulation. Benefiting from advancements in nanofabrication and mechanistic understanding of chiroptical effects, chiral metamaterials have shown potential in a variety of applications including circular polarizers, chiral sensors, and chiroptical detectors. Recently, chiral metamaterials made by moiré stacking, superimposing two or more periodic patterns with different lattice constants or relative spatial displacement, have shown promise for chiroptical applications. The moiré chiral metamaterials (MCMs) take advantage of lattice-dependent chirality, giving cost-effective fabrication, flexible tunability, and reconfigurability superior to conventional chiral metamaterials. This feature article focuses on recent progress of MCMs. We discuss optical mechanisms, structural design, fabrication, and applications of the MCMs. We conclude with our perspectives on the future opportunities for the MCMs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.