Abstract
Weyl semimetals have nodes in their electronic structure at which electrons attain a definite chirality. Due to the chiral anomaly, the nonconservation of charges with given chirality, the axion term appears in their effective electromagnetic action. We determine how this affects the properties of time-reversal invariant Weyl superconductors (SCs) in the London regime. For type II SCs the axion coupling generates magnetic B fields transverse to vortices, which become unstable at a critical coupling so that a transition into type I SC ensues. In this regime an applied B field not only decays inside the SC within the London penetration depth, but the axion coupling generates an additional perpendicular field. Consequently, when penetrating into the bulk the B field starts to steadily rotate away from the applied field. At a critical coupling the screening of the magnetic field breaks down. The novel chiral superconducting state that emerges has a periodically divergent susceptibility that separates onsets of chiral Meissner regimes. The chiral anomaly thus leaves very crisp experimental signatures in structurally chiral Weyl SCs with an axion response. Published by the American Physical Society 2024
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.