Abstract

The development of highly sensitive and selective enantiomeric platforms towards the rapid screening of active pharmaceutical ingredients (APIs) is nowadays a crucial challenge in several fields related to pharmacology, biomedicine, biotechnology and (bio)sensors. Herein, it is presented a novel, facile and generic methodology focused on exploiting the synergistically and electrocatalytic properties of chiral magnetic-nanobiofluids (mNBFs) with electrochemical enantiobiosensing at a magneto nanocomposite graphene paste electrode (mNC–GPE). The feasibility of this approach has been validated by chirally recognizing tryptophan (TRP) enantiomers as a proof-of-concept. For this aim, a specific chiral mNBF based on an aqueous dispersion of cobalt ferrite loaded with gold nanoparticles carrying a thiolated β-cyclodextrin (β–CD-SH/Au/CoFe2O4–NPs) has been synthesized and used towards the supramolecular discrimination of TRP enantiomers at an advanced graphene-paste transducer via cyclic voltammetry. This strategy, which is the first demonstration of applicability of chiral mNBFs for electrochemical enantiorecognition, opens up new approaches into enantio(bio)sensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.