Abstract

AbstractChiral magnetic oxide nanomaterials (CMONs), which combine the beneficial effects of chirality and magnetism in a single unit, have found applications in biomedical, optical, and electronic devices as well as in catalysis and sensing. This is largely due to the simultaneous presence of magnetic properties, catalytic activity, biocompatibility and optical activity, or magneto‐optical effects, which are circular polarization and magnetization dependent. This review summarizes the key findings derived from recent research works on the synthesis, properties, and applications of CMONs. The three main approaches in the synthesis and property tuning of CMONs, namely, post‐functionalization, in situ approach, and assembly with soft templates, are discussed. A summary and some future prospects of the CMONs with respect to their synthetic routes, chirality origin, and applications are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.