Abstract

The chiral magnetic effect is a phenomenon where an electromagnetic current is generated along a magnetic field. Recently, in nonequilibrium systems, negative longitudinal magnetoresistance has been observed experimentally in Dirac/Weyl semimetals, which provides evidence for the chiral magnetic effect as a nonequilibrium current. On the other hand, the emergence of the chiral magnetic effect as an equilibrium current is still controversial. We propose a possible realization of the chiral magnetic effect as an equilibrium current using inhomogeneous magnetic fields. By employing tight-binding calculations and linear response theory, we demonstrate that a finite current density is generated by inhomogeneous magnetic fields, while the spatial integration of the current is equal to zero, which is consistent with the so-called "no-go theorem" of the chiral magnetic effect in real lattice systems. Moreover, we propose an experimental setup to detect the effect in Weyl semimetal materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call