Abstract

A promising technology for fabricating chiral long-period gratings (CLPGs) is demonstrated using a commercial fusion splicer. The key aspect of this technology is the incorporation of a fully automatic program we designed for the fusion splicer. High-quality CLPGs are successfully fabricated from single-mode fibers, which have very flat surfaces and low insertion loss. We also investigate the tuning characteristics of the transmission spectrum with the mechanical twist rate in CLPGs for torsion sensing application. The torsion sensitivity is improved and the shift in resonance wavelength versus the mechanical twist rate shows an almost perfect linear relationship. In addition, by choosing appropriate fabrication parameters, the fabricated CLPGs can be used as tunable single-band-rejection filters in a broad wavelength range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.