Abstract

We derive a chiral kinetic theory with Landau level basis, which is valid for slow-varying magnetic field with arbitrary magnitude. We apply the new chiral kinetic theory to calculate the electric conductivity transverse to the magnetic field in a magnetized QED and QCD plasma. Under the lowest Landau level approximation and relaxation time approximation, we find the transverse conductivity approaches a constant in the large magnetic field limit and is inversely proportional to the relaxation time. We also obtain a frequency-dependent transverse conductivity in response to a time-dependent electric field. We find a high frequency enhancement in this conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call