Abstract

Enzyme-activatable optical probes are important for future advances in cancer imaging, but may easily suffer from low signal-to-background ratios unless not optimized. To address this shortcoming, numerous mechanisms to modulate the fluorescence signal have been explored. We report herein newly synthesized probes based on self-immolative linkers containing chiral J-aggregate-forming dyes. Signal modulation by formation of chiral J-aggregates is yet unexplored in optical enzyme probe design. The comprehensive characterization of the probes by absorption, CD, fluorescence, and time-resolved fluorescence spectroscopy revealed dye-dye interactions not observed for the free dyes in solution as well as dye-protein interactions with the enzyme. This suggested that J-aggregate formation is challenging to achieve with current probe design and that interactions of the dyes with the enzyme may interfere with achieving high signal-to-background ratios. The detailed understanding of the interactions provided herein provides valuable guidelines for the future design of similar probes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call