Abstract

Chiral-induced spin selectivity is a phenomenon in which electron spins are polarized as they are transported through chiral molecules, and the spin polarization depends on the handedness of the chiral molecule. In this study, we show that spin selectivity can be realized in achiral materials by strongly coupling electrons to a circularly polarized mode of an optical cavity or waveguide. Through the investigation of spin-dependent electron transport in a two-terminal setup using the nonequilibrium Green's function approach, it is found that a large spin polarization can be obtained if the rate of dephasing is sufficiently small and the average chemical potential of the two leads is within an appropriate range of values, which is narrow because of the high frequency of the optical mode. To obtain a wider range of energies for a large spin polarization, chiral molecules can be combined with light-matter interactions. To demonstrate this, the spin polarization of electrons transported through a helical molecule strongly coupled to a circularly polarized optical mode is evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call