Abstract

Light-emitting diodes (LEDs) with the circularly polarized luminescence features have attracted attention to the promising applications ranging from solid-state lighting and displays to bioencoding and anticounterfeiting. The prerequisite of circularly polarized luminescence is highly emissive chiral materials. Here, we demonstrated that (R/S-MBA)4Cu4I8·2H2O (MBA = α-methylbenzylaminium) and acentric Gua6Cu4I10 (Gua = guanidinium) single crystals were grown on the basis of Gua3Cu2I5 by the slow evaporation method. (R/S-MBA)4Cu4I8·2H2O single crystals exhibited excellent circularly polarized luminescence (CPL) characteristics. More importantly, ultraviolet-pumped LEDs (UV-LEDs) based on (R/S-MBA)4Cu4I8·2H2O and Gua6Cu4I10 single crystals exhibit a higher optical selectivity when exposed to right-handed and left-handed circular polarization (RCP and LCP) conditions. (S-MBA)4Cu4I8·2H2O single crystals and Gua6Cu4I10 single crystals induced by the (R)-MBA cation exhibit the different polarized light intensities at PL peak positions in different λ/4 waveplate polarizer angle directions, which provides new possibilities for the further applications from 3D displays to spintronics, as well as anticounterfeiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.