Abstract
Abstract We construct a filtration of chiral Hodge cohomolgy of a K3 surface $X$, such that its associated graded object is a unitary representation of the $\mathcal{N}=4$ superconformal vertex algebra with central charge $c=6$ and its subspace of primitive vectors has the property; its equivariant character for a symplectic automorphism $g$ of finite order acting on $X$ agrees with the McKay–Thompson series for $g$ in Mathieu moonshine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.